You are invited to Log in or Register a free Frihost Account!

reference to geographical information system

A geographic information system (GIS), or geographical information system, captures, stores, analyzes, manages, and presents data that is linked to location. Technically, GIS is geographic information systems which includes mapping software and its application with remote sensing, land surveying, aerial photography, mathematics, photogrammetry, geography, and tools that can be implemented with GIS software. Still, many refer to "geographic information system" as GIS even though it doesn't cover all tools connected to topology.

In the strictest sense, the term describes any information system that integrates, stores, edits, analyzes, shares, and displays geographic information. In a more generic sense, GIS applications are tools that allow users to create interactive queries (user created searches), analyze spatial information, edit data, maps, and present the results of all these operations. Geographic Information Science is the science underlying the geographic concepts, applications and systems, taught in degree and GIS Certificate programs at many universities.
GIS technology can be used for scientific investigations, resource management, asset management, archaeology, environmental impact assessment, urban planning, cartography, criminology, geographic history, marketing, logistics, Prospectivity Mapping, and other purposes. For example, GIS might allow emergency planners to easily calculate emergency response times in the event of a natural disaster, GIS might be used to find wetlands that need protection from pollution, or GIS can be used by a company to site a new business location to take advantage of a previously under-served market.
You might be able to tell which wetlands dry up at certain times of the year. Using information from many different sources in many different forms, GIS can help with such analysis. The primary requirement for the source data consists of knowing the locations for the variables. Location may be annotated by x, y, and z coordinates of longitude, latitude, and elevation, or by other geocode systems like ZIP Codes or by highway mile markers. Any variable that can be located spatially can be fed into a GIS. Several computer databases that can be directly entered into a GIS are being produced by government agencies and non-government organizations[citation needed]. Different kinds of data in map form can be entered into a GIS.

A GIS can also convert existing digital information, which may not yet be in map form, into forms it can recognize and use. For example, digital satellite images generated through remote sensing can be analyzed to produce a map-like layer of digital information about vegetative covers. Another fairly recently developed resource for naming GIS objects is the Getty Thesaurus of Geographic Names (GTGN), which is a structured vocabulary containing around 1,000,000 names and other information about places.[9]

Likewise, census or hydrological tabular data can be converted to map-like form, serving as layers of thematic information in a GIS.
A property ownership map and a soils map might show data at different scales. Map information in a GIS must be manipulated so that it registers, or fits, with information gathered from other maps. Before the digital data can be analyzed, they may have to undergo other manipulations—projection and coordinate conversions, for example—that integrate them into a GIS.

The earth can be represented by various models, each of which may provide a different set of coordinates (e.g., latitude, longitude, elevation) for any given point on the Earth's surface. The simplest model is to assume the earth is a perfect sphere. As more measurements of the earth have accumulated, the models of the earth have become more sophisticated and more accurate. In fact, there are models that apply to different areas of the earth to provide increased accuracy (e.g., North American Datum, 1927 - NAD27 - works well in North America, but not in Europe). See datum (geodesy) for more information.

Projection is a fundamental component of map making. A projection is a mathematical means of transferring information from a model of the Earth, which represents a three-dimensional curved surface, to a two-dimensional medium—paper or a computer screen. Different projections are used for different types of maps because each projection particularly suits certain uses. For example, a projection that accurately represents the shapes of the continents will distort their relative sizes. See Map projection for more information.

Since much of the information in a GIS comes from existing maps, a GIS uses the processing power of the computer to transform digital information, gathered from sources with different projections and/or different coordinate systems, to a common projection and coordinate system. For images, this process is called rectification.

Today, even laypeople are aware of GPS used for locating in terms of latitude, longitude and height. Many people are aware of Google Earth and even GIS. In this scenario, however, majority of us misunderstands latitude and longitude. Authalic coordinates are what generally conceived as latitude and longitude, in which the Earth is assumed as spherical in shape. In day-to-day life, the coordinates we see on maps such as those from GPS are geodetic latitude and longitude. It is also imperative to know the datum of the map in use; and if the datum is changed, any selected location can have different geodetic coordinates.
Given the vast range of spatial analysis techniques that have been developed over the past half century, any summary or review can only cover the subject to a limited depth. This is a rapidly changing field, and GIS packages are increasingly including analytical tools as standard built-in facilities or as optional toolsets, add-ins or 'analysts'. In many instances such facilities are provided by the original software suppliers (commercial vendors or collaborative non commercial development teams), whilst in other cases facilities have been developed and are provided by third parties. Furthermore, many products offer software development kits (SDKs), programming languages and language support, scripting facilities and/or special interfaces for developing one’s own analytical tools or variants. The website Geospatial Analysis and associated book/ebook attempt to provide a reasonably comprehensive guide to the subject.[11] The impact of these myriad paths to perform spatial analysis create a new dimension to business intelligence termed "spatial intelligence" which, when delivered via intranet, democratizes access to operational sorts not usually privy to this type of information.
Main articles: Neogeography and Public Participation GIS

With the popularization of GIS in decision making, scholars have begun to scrutinize the social implications of GIS. It has been argued that the production, distribution, utilization, and representation of geographic information are largely related with the social context. Other related topics include discussion on copyright, privacy, and censorship. A more optimistic social approach to GIS adoption is to use it as a tool for public participation.
Related topics
Question about MySQL!
what is your Job?
Control or Freedom of Internet
Oh, the evil that Bush has done to this world...
is windowmaker proyect dead??
how did you learn about html, php or other languages???
Discussion ABOUT “State your Poly Philosophy! 1000 FRIH$”
Your opinion on Wikipedia... Is it full of junk?
Adding textbox dynamically. HELP!
Did the war in Troy really happened?
Creating a Website
Sea Fossils on Mountain Tops
mysql_connect give error ?? why ??
Reply to topic    Frihost Forum Index -> Computers -> Software

© 2005-2011 Frihost, forums powered by phpBB.